Cart (Loading....) | Create Account
Close category search window
 

Magnetic field effect on interface profile between immiscible nonmagnetic liquids—Enhanced Moses effect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Sugawara, Hiroharu ; Department of Applied Chemistry, Faculty of Engineering, University of Tokyo, 7‐3‐1, Hongo, Bunkyo‐ku, Tokyo 113, Japan ; Hirota, N. ; Homma, Takuro ; Ohta, Masayuki
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.361652 

The change in the interface profile between immiscible nonmagnetic liquids was investigated quantitatively in a superconducting magnet with a large horizontal bore. The interface profile changed into concave down or up at the field center accordingly to the balance of magnetic susceptibilities between the lower and upper liquids. A flat interface was also demonstrated when the susceptibilities were balanced. It was found that modification of the interface profile was significantly amplified under an applied field as low as 1 T when the densities of the two liquids were quite close. The morphological change induced by the applied magnetic field can be used to remove a boundary, which initially separates two liquids without the field, and to initiate a mixing process or a chemical reaction between the two liquids. © 1996 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:79 ,  Issue: 8 )

Date of Publication:

Apr 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.