Cart (Loading....) | Create Account
Close category search window

Investigation of reactive‐ion‐etch‐induced damage of InP/InGaAs multiple quantum wells by photoluminescence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Steffensen, O.M. ; Mikroelektronik Centret, Building 345 East, Technical University of Denmark, DK‐2800 Lyngby, Denmark ; Birkedal, D. ; Hanberg, J. ; Albrektsen, O.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The effects of CH4/H2 reactive ion etching (RIE) on the optical properties of an InP/InGaAs multiple‐quantum‐well structure have been investigated by low‐temperature photoluminescence (PL). The structure consisted of eight InGaAs quantum wells, lattice matched to InP, with nominal thicknesses of 0.5, 1, 2, 3, 5, 10, 20, and 70 monolayers, respectively, on top of a 200‐nm‐thick layer of InGaAs for calibration. The design of this structure allowed etch‐induced damage depth to be obtained from the PL spectra due to the different confinement energies of the quantum wells. The samples showed no significant decrease of luminescence intensity after RIE. However, the observed shift and broadening of the PL peaks from the quantum wells indicate that intermixing of well and barrier material increased with etch time. © 1995 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:78 ,  Issue: 3 )

Date of Publication:

Aug 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.