Cart (Loading....) | Create Account
Close category search window

Real-time atomic absorption mercury continuous emission monitor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zamzow, Daniel S. ; Ames Laboratory-United States Department of Energy, Iowa State University, Ames, Iowa 50011-3020 ; Bajic, Stanley J. ; Eckels, David E. ; Baldwin, David P.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A continuous emission monitor (CEM) for mercury (Hg) in combustor flue gas streams has been designed and tested for the detection of Hg by optical absorption. A sampling system that allows continuous introduction of stack gas is incorporated into the CEM, for the sequential analysis of elemental and total Hg. A heated pyrolysis tube is used in the system to convert oxidized Hg compounds to elemental Hg for analysis of total Hg; the pyrolysis tube is bypassed to determine the elemental Hg concentration in the gas stream. A key component of the CEM is a laboratory-designed and -assembled echelle spectrometer that provides simultaneous detection of all of the emission lines from a Hg pen lamp, which is used as the light source for the optical absorption measurement. This feature allows for on-line spectroscopic correction for interferent gases such as sulfur dioxide and nitrogen dioxide, typically present in combustion stack gas streams, that also absorb at the Hg detection wavelength (253.65 nm). This article provides a detailed description of the CEM system, the characteristics and performance of the CEM, and the results of field tests performed at the Environmental Protection Agency-Rotary Kiln at Research Triangle Park, NC. © 2003 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:74 ,  Issue: 8 )

Date of Publication:

Aug 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.