Cart (Loading....) | Create Account
Close category search window

An in situ cell for characterization of solids by soft x-ray absorption

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Drake, Ian J. ; Department of Chemical Engineering, University of California, Berkeley, California 94720-1462 ; Liu, Teris C.N. ; Gilles, Mary ; Tyliszczak, Tolek
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A cell has been designed and fabricated for in situ characterization of catalysts and environmental materials using soft x-ray absorption spectroscopy and spectromicroscopy at photon energies above 250 eV. “Lab-on-a-chip” technologies were used to fabricate the cell on a glass wafer. The sample compartment is 1.0 mm in diameter and has a gas path length of 0.8 mm to minimize x-ray absorption in the gas phase. The sample compartment can be heated to 533 K by an Al resistive heater and gas flows up to 5.0 cm3 min-1 can be supplied to the sample compartment through microchannels. The performance of the cell was tested by acquiring Cu L3-edge x-ray appearance near-edge structure (XANES) data during the reduction and oxidation of a silica-supported Cu catalyst using the beam line 11.0.2 scanning transmission x-ray microscope (STXM) at the Advanced Light Source of Lawrence Berkeley National Laboratory (Berkeley, CA). Two-dimensional images of individual catalyst particles were recorded at photon energies between 926 and 937 eV, the energy range in which the Cu(II) and Cu(I) L3 absorption edges are observed. Oxidation state specific images of the catalyst clearly show the disappearance of Cu(II) species during the exposure of the oxidized sample to 4% CO in He while increasing the temperature fro- m 308 to 473 K. Reoxidation restores the intensity of the image associated with Cu(II). Cu L3-edge XANES spectra obtained from stacks of STXM images show that with increasing temperature the Cu(II) peak intensity decreases as the Cu(I) peak intensity increases.

Published in:

Review of Scientific Instruments  (Volume:75 ,  Issue: 10 )

Date of Publication:

Oct 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.