Cart (Loading....) | Create Account
Close category search window

Design for a multifrequency high magnetic field superconducting quantum interference device-detected quantitative electron paramagnetic resonance probe: Spin-lattice relaxation of cupric sulfate pentahydrate (CuSO4∙5H2O)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cage, Brant ; National Institute of Standards and Technology, Boulder, Colorado 80305 ; Russek, Stephen

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We have designed a spectrometer for the quantitative determination of electron paramagnetic resonance (EPR) at high magnetic fields and frequencies. It uses a superconducting quantum interference device (SQUID) for measuring the magnetic moment as a function of the applied magnetic field and microwave frequency. We used powdered 2,2-diphenyl-1-picrylhydrazyl to demonstrate resolution of g-tensor anisotropy to 1 mT in a magnetic field of 3 T with a sensitivity of 1014 spins per 0.1 mT. We demonstrate multifrequency operation at 95 and 141 GHz. By use of an aligned single crystal of cupric sulfate pentahydrate (chalcanthite) CuSO4∙5H2O, we show that the spectrometer is capable of EPR line shape analysis from 4 to 200 K with a satisfactory fit to a Lorentzian line shape at 100 K. Below 100 K, we observed line-broadening, g shifts, and spectral splittings, all consistent with a known low-dimensional phase transition. Using SQUID magnetometry and a superconducting magnet, we improve by an order of magnitude the sensitivity and magnetic field range of earlier power saturation studies of CuSO4∙5H2O. We were able to saturate up to 70% of the magnetic moment with power transfer saturation studies at 95 GHz, 3.3 T, and 4 K - and obtained the spin-lattice relaxation time, T1=1.8 ms, of CuSO4∙5H2O at 3.3 T and 4 K. We found an inverse linear dependence of T1, in units of seconds (s) at 3.3 T between 4 and 2.3 K, such that T1=0.016∙Ks∙τ-1-0.0022∙s, where τ is the absolute bath temperature. The quantitative determination of EPR is difficult with standard EPR techniques, especially at high frequencies or fields. Therefore this technique is of considerable value.

Published in:

Review of Scientific Instruments  (Volume:75 ,  Issue: 11 )

Date of Publication:

Nov 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.