By Topic

Using Stereo Matching with General Epipolar Geometry for 2D Face Recognition across Pose

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Castillo, C.D. ; Dept. of Comput. Sci., Univ. of Maryland, College Park, MD, USA ; Jacobs, D.W.

Face recognition across pose is a problem of fundamental importance in computer vision. We propose to address this problem by using stereo matching to judge the similarity of two, 2D images of faces seen from different poses. Stereo matching allows for arbitrary, physically valid, continuous correspondences. We show that the stereo matching cost provides a very robust measure of similarity of faces that is insensitive to pose variations. To enable this, we show that, for conditions common in face recognition, the epipolar geometry of face images can be computed using either four or three feature points. We also provide a straightforward adaptation of a stereo matching algorithm to compute the similarity between faces. The proposed approach has been tested on the CMU PIE data set and demonstrates superior performance compared to existing methods in the presence of pose variation. It also shows robustness to lighting variation.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 12 )