By Topic

Biometric System by Foot Pressure Change Based on Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hong Ye ; Grad. Sch. of Eng., Univ. of Hyogo, Kobe ; Kobashi, S. ; Hata, Y. ; Taniguchi, K.
more authors

In this paper, we propose an approach to extract features of center of foot pressure (COP) obtained by a load distribution sensor and apply this method to develop a biometrics personal identification system. Biometrics technology, as a method of personal identification, plays an important role in our daily lives. In our experiment, we have a user stand on load distribution sensor with slipper, and acquire pressure data during a simple motion, as touching a bell nearby by one hand but without movements of feet. We propose a biometrics personal identification system with less information, time and low space. First, we calculate the site of COP from the obtained pressure data. Features for identification are extracted from the position and the movement of COP. Second, we built a k-out-of-n system and a neural network (NN) model with the feature parameter. Third, we input test data to the two systems. Finally, we give a comparison of these two methods. We employ 11 volunteers. The experimental result reveals that the proposed identification method can achieve an accuracy of 12.0% in FRR (False Rejection Rate) and 1.0% in FAR (False Acceptance Rate).

Published in:

Multiple-Valued Logic, 2009. ISMVL '09. 39th International Symposium on

Date of Conference:

21-23 May 2009