Cart (Loading....) | Create Account
Close category search window
 

Optimum Filters for Second- and Third-Order Phase-Locked Loops by an Error-Function Criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gupta, S.C. ; Motorola, Inc., Western Military Electronics Ctr., Scottsdale, Ariz.; Arizona State University, Tempe, AriZ. ; Solem, R.J.

The advantages of a third-order phase-locked loop for FM television is considered here. The bandwidth is maintained small and since the operation is generally at frequencies small compared to the bandwidth, the criterion is to keep error as small as possible in this frequency range. A study is made by comparing second- and third-order phase-locked loops designed from Wiener filtering theory, as advanced by Jaffe and Rechtin [1]; considerable improvement in error is evident using a third-order phase-locked loop for frequencies up to about one-twentieth of the bandwidth. To improve the error function still further, a new error-function criterion is established whereby the error at the lower frequencies of interest is minimized. Such a minimum is obtained for both second- and third-order phase-locked loops. Transfer function behavior, transient response, and root locus plots of all these cases are given to emphasize the advantages of this new design. Error is reduced up to six decibels with no degradation of transient response, overshoot, etc. It is shown that the bandwidth can be reduced without increasing the error if the filter designed by this new criterion is used.

Published in:

Space Electronics and Telemetry, IEEE Transactions on  (Volume:SET-11 ,  Issue: 2 )

Date of Publication:

June 1965

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.