By Topic

Clock Synchronization in Distributed Real-Time Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kopetz, Hermann ; Institute of Technische Informatik, Technical University of Vienna, A-1040 Vienna, Austria. ; Ochsenreiter, Wilhelm

The generation of a fault-tolerant global time base with known accuracy of synchronization is one of the important operating system functions in a distributed real-time system. Depending on the types and number of tolerated faults, this paper presents upper bounds on the achievable synchronization accuracy for external and internal synchronization in a distributed real-time system. The concept of continuous versus instantaneous synchronization is introduced in order to generate a uniform common time base for local, global, and external time measurements. In the last section, the functions of a VLSI clock synchronization unit, which improves the synchronization accuracy and reduces the CPU load, are described. With this unit, the CPU overhead and the network traffic for clock synchronization in state-of-the-art distributed real-time systems can be reduced to less than 1 percent.

Published in:

Computers, IEEE Transactions on  (Volume:C-36 ,  Issue: 8 )