By Topic

Nearest-Neighbor Mapping of Finite Element Graphs onto Processor Meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sadayappan, P. ; Department of Computer and Information Science, The Ohio State University, Columbus, OH 43210. ; Ercal, F.

The processor allocation problem is addressed in the context of the parallelization of a finite element modeling program on a processor mesh. A heuristic two-step, graph-based mapping scheme with polynomial-time complexity is developed: 1) initial generation of a graph partition for nearest-neighbor mapping of the finite element graph onto the processor graph, and, 2) a heuristic boundary refinement procedure to incrementally alter the initial partition for improved load balancing among the processors. The effectiveness of the approach is gaged both by estimation using a model with empirically determined parameters, as well as implementation and experimental measurement on a 16 node hypercube parallel computer.

Published in:

Computers, IEEE Transactions on  (Volume:C-36 ,  Issue: 12 )