By Topic

Minimum-Perimeter Polygons of Digitized Silhouettes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sklansky, J. ; School of Engineering, University of California, Irvine, Calif. 92664. ; Chazin, Robert L. ; Hansen, Bruce J.

The minimum-perimeter polygon of a silhouette has been shown to be a means for recognizing convex silhouettes and for smoothing the effects of digitization in silhouettes. We describe a new method of computing the minimum-perimeter polygon (MPP) of any digitized silhouette satisfying certain constraints of connectedness and smoothness, and establish the underlying theory. Such a digitized silhouette is called a ``regular complex,'' in accordance with the usage in piecewise linear topology. The method makes use of the concept of a stretched string constrained to lie in the cellular boundary of the digitized silhouette. We show that, by properly marking the virtual as well as the real vertices of an MPP, the MPP can serve as a precise representation of any regular complex, and that this representation is often an economical one.

Published in:

Computers, IEEE Transactions on  (Volume:C-21 ,  Issue: 3 )