By Topic

Error Correction in Adders using Systematic Subcodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Thammavarapu R. N. Rao ; Department of Electrical Engineering, University of Maryland, College Park, Md. 20742.

It is presently known that (single) error correction in adders can be obtained by use of biresidue codes, which use two separate checkers with respect to two different check bases of the form 2c ¿1. It is shown here that a class of systematic subcodes derived from the nonsystematic AN codes can provide error correction using only one checker. However, the check base A of these codes is not of the form 2c ¿1 and therefore involves a somewhat complex addition structure involving two or more end-around-carries (EAC's). Here we present a generalized theory for the construction of a systematic subcode for a given AN code in such a way that error control properties of the AN code are preserved in this new code. The ``systematic weight'' and ``systematic distance'' functions in this new code depend not only on its number representation system but also on its addition structure. Finally, to illustrate this theory, a simple error-correcting adder organization using a systematic subcode of 29 N code is sketched in some detail.

Published in:

IEEE Transactions on Computers  (Volume:C-21 ,  Issue: 3 )