By Topic

A Class of Algorithms for Fast Digital Image Registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daniel I. Barnea ; IBM T. J. Watson Research Center, Yorktown Heights, N. Y. 10598.; Eljim, Holon, Israel. ; Harvey F. Silverman

The automatic determination of local similarity between two structured data sets is fundamental to the disciplines of pattern recognition and image processing. A class of algorithms, which may be used to determine similarity in a far more efficient manner than methods currently in use, is introduced in this paper. There may be a saving of computation time of two orders of magnitude or more by adopting this new approach. The problem of translational image registration, used for an example throughout, is discussed and the problems with the most widely used method-correlation explained. Simple implementations of the new algorithms are introduced to motivate the basic idea of their structure. Real data from ITOS-1 satellites are presented to give meaningful empirical justification for theoretical predictions.

Published in:

IEEE Transactions on Computers  (Volume:C-21 ,  Issue: 2 )