Cart (Loading....) | Create Account
Close category search window
 

Artificial Ionospheres for Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marmo, F.F. ; Geophysics Corporation of America, Boston, Mass. ; Engelman, A.

This paper suggests the utilization of an artificial ionosphere (artificial electron cloud) for RF communication. For convenience the presentation is given in two major parts. The first part is concerned with the general considerations associated with the generation, dynamics and other physical characteristics of the artificial ionospheres. It presents a general survey of the data and analysis from several experiments designed and performed expressly for obtaining critical engineering parameters required for the systematic development of these clouds as a propagation medium. These parameters include 1) chemical yield of contaminant, 2) thermal ionization efficiency, 3) upper atmosphere wind velocities, 4) wind shear, 5) ambipolar diffusion, 6) neutral diffusion, 7) solar photoionization probabilities, and 8) several decay processes including mutual neutralization, chemical consumption, electron attachment, recombination, etc. The effect of these processes upon the propagation capabilities of electron clouds is emphasized. Finally, some suggested improvements are offered for optimizing the artificial ionosphere propagation capability. The analytical model for cloud reflection, which is discussed in detail, is the spherically symmetric Gaussian electron distribution cloud. Cross-sectional cloud values as a function of time, including the maximum case, are discussed for this model. Calculations of cloud effectiveness for other reflective cases assuming various distribution functions, as well as one refractive case, are also presented. For the model discussed, the RF communications capability of the artificially generated ionosphere is presented. Since it is of first-order importance, the geometrical limitation of cloud generation altitude as a function of system communications range is considered.

Published in:

Military Electronics, IRE Transactions on  (Volume:MIL-4 ,  Issue: 2-3 )

Date of Publication:

April-July 1960

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.