By Topic

Resonance-mode effect on microcantilever mass-sensing performance in air

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Xiaoyuan Xia ; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China ; Xinxin Li

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2949390 

This research investigates the air drag damping effect of the micromachined cantilevers in different resonance modes on the quality factor, which are operated in ambient air. Based on a simplified dish-string model for air drag force acting on the resonant cantilever, the air drag damping properties of the cantilevers vibrating in different modes are analyzed with theoretic vibration mechanics, which is complemented and further confirmed with finite-element simulation. Four kinds of integrated cantilevers, which resonate in the first flexural mode, the second flexural mode, the first torsional mode, and the second torsional mode, respectively, are designed and fabricated by using micromachining techniques. Finally, biomolecular sensing experiments are carried out to verify the theoretical results obtained before. From both the modeling and experimental results, it can be seen that damping characteristics of the torsional cantilever resonators are generally better than that of the flexural ones, and quality factor of the cantilever resonator in a higher-frequency mode is always superior to that in a lower-frequency one. Among the four kinds of microcantilever resonators operated in our experiments, the one operated in the second flexural modes exhibits the highest Q factor and the best biomass sensing performance.

Published in:

Review of Scientific Instruments  (Volume:79 ,  Issue: 7 )