Cart (Loading....) | Create Account
Close category search window

Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lai, K. ; Department of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA ; Kundhikanjana, W. ; Kelly, M. ; Shen, Z.‐X.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

This paper presents a detailed modeling and characterization of a microfabricated cantilever-based scanning microwave probe with separated excitation and sensing electrodes. Using finite-element analysis, we model the tip-sample interaction as small impedance changes between the tip electrode and the ground at our working frequencies near 1 GHz. The equivalent lumped elements of the cantilever can be determined by transmission line simulation of the matching network, which routes the cantilever signals to 50 Ω feed lines. In the microwave electronics, the background common-mode signal is canceled before the amplifier stage so that high sensitivity (below 1 aF capacitance changes) is obtained. Experimental characterization of the microwave microscope was performed on ion-implanted Si wafers and patterned semiconductor samples. Pure electrical or topographical signals can be obtained from different reflection modes of the probe.

Published in:

Review of Scientific Instruments  (Volume:79 ,  Issue: 6 )

Date of Publication:

Jun 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.