By Topic

Precise measurements of radial temperature gradients in the laser-heated diamond anvil cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Kavner, A. ; Earth and Space Science Department and Institute for Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California 90095, USA ; Nugent, C.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2841173 

A new spectroradiometry system specialized for measuring two-dimensional temperature gradients for samples at high pressure in the laser heated diamond anvil cell has been designed and constructed at UCLA. Emitted light intensity from sample hotspots is imaged by a videocamera for real time monitoring, an imaging spectroradiometer for temperature measurement, and a high-dynamic-range camera that examines a magnified image of the two-dimensional intensity distribution of the heated spot, yielding precise measurements of temperature gradients. With this new system, most systematic errors in temperature measurement due to chromatic aberration are bypassed. We use this system to compare several different geometries of temperature measurement found in the literature, including scanning a pinhole aperture, and narrow-slit and wide-slit entrance apertures placed before the imaging spectrometer. We find that the most accurate way of measuring a temperature is to use the spectrometer to measure an average hotspot temperature and to use information from the imaging charge coupled device to calculate the temperature distribution to the hotspot. We investigate the effects of possible wavelength- and temperature-dependent emissivity, and evaluate their errors. We apply this technique to measure the anisotropy in temperature distribution of highly oriented graphite at room temperature and also at high pressures. A comparison between model and experiment demonstrates that this system is capable of measuring thermal diffusivity in anisotropic single crystals and is also capable of measuring relative thermal diffusivity at high pressures and temperatures among different materials. This shows the possibility of using this system to provide information about thermal diffusivity of materials at high pressure and temperature.

Published in:

Review of Scientific Instruments  (Volume:79 ,  Issue: 2 )