By Topic

Application of accelerators for the research and development of scintillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Shibuya, Kengo ; Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555, Japan ; Koshimizu, Masanori ; Asai, Keisuke ; Muroya, Yusa
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We introduce experimental systems which use accelerators to evaluate scintillation properties such as scintillation intensity, wavelength, and lifetime. A single crystal of good optical quality is often unavailable during early stages in the research and development (R&D) of new scintillator materials. Because of their beams’ high excitation power and/or low penetration depth, accelerators facilitate estimation of the properties of early samples which may only be available as powders, thin films, and very small crystals. We constructed a scintillation spectrum measurement system that uses a Van de Graaff accelerator and an optical multichannel analyzer to estimate the relative scintillation intensity. In addition, we constructed a scintillation time profile measurement system that uses an electron linear accelerator and a femtosecond streak camera or a microchannel plate photomultiplier tube followed by a digital oscilloscope to determine the scintillation lifetimes. The time resolution is approximately 10 ps. The scintillation spectra or time profiles can be obtained in a significantly shorter acquisition time in comparison with that required by conventional measuring systems. The advantages of the systems described in this study can significantly promote the R&D of novel scintillator materials.

Published in:

Review of Scientific Instruments  (Volume:78 ,  Issue: 8 )