Cart (Loading....) | Create Account
Close category search window

On the design of capacitive sensors using flexible electrodes for multipurpose measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Thibault, Pierre ; Centre de Recherches sur les Très Basses Températures, laboratoire associé à l''Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex 9, France ; Diribarne, Pantxo ; Fournier, Thierry ; Perraud, Sylvain
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

This article evaluates the potential of capacitive measurements using flexible electrodes to access various physical quantities. These electrodes are made of a thin metallic film, typical thickness 0.2 μm, evaporated on a plastic substrate. Their large flexibility enables them to be mounted in complex geometries such as curved surfaces. In the configuration of planar condensers, using a very sensitive commercial capacitive bridge and a three-terminal measurement method, several measurements are presented. A relative resolution of 10-8 for the thermal expansion of samples is obtained at low temperature in a differential configuration. The same technique adopted for pressure gauge measurements at low temperature led to a typical 0.1 Pa resolution over a dynamic range of 104Pa. In the configuration of interleaved electrodes, condensers have been used to measure wetting by either bulk liquid helium or by thin continuous helium films in a cylindrical pipe. Both experimental and numerical evidence is provided, showing that the close proximity of a reference ground potential significantly increases the relative sensitivity to fluid wetting. Further, interleaved electrodes can be used to access both the area that is covered by a liquid film but also to determine the thickness of this film, provided it is comparable to the periodicity of the electrode pattern.

Published in:

Review of Scientific Instruments  (Volume:78 ,  Issue: 4 )

Date of Publication:

Apr 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.