Cart (Loading....) | Create Account
Close category search window
 

Portable instrument that integrates irradiation with fluorescence and reflectance spectroscopies during clinical photodynamic therapy of cutaneous disease

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cottrell, W.J. ; The Institute of Optics, University of Rochester, Rochester, New York 14627 ; Oseroff, A.R. ; Foster, T.H.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2204617 

We report a portable clinical instrument for delivering photodynamic therapy (PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivers the treatment beam to a user-defined field on the skin and performs reflectance and fluorescence spectroscopies at two regions within this field. The instrument is being used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, blood volume, and hemoglobin oxygen saturation during a pilot clinical trial of 5-aminolevulinic acid-PDT treatment of superficial basal cell carcinoma (BCC). Protoporphyrin IX and photoproduct fluorescence excited by the 633 nm PDT treatment laser is collected between 655 and 800 nm. During a series of brief treatment interruptions at programable time points, white light reflectance spectra between 475 and 800 nm are acquired. Fluorescence spectra are corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular value decomposition fitting routine. Reflectance spectra additionally provide information on blood volume and hemoglobin oxygen saturation. Monitoring blood oxygenation and implicit dose metrics such as photosensitizer photobleaching during PDT allows the improved interpretation of clinical results and is helping to guide the treatment protocol for an anticipated low-irradiance PDT clinical trial of BCC.

Published in:

Review of Scientific Instruments  (Volume:77 ,  Issue: 6 )

Date of Publication:

Jun 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.