By Topic

Line optical tweezers instrument for measuring nanoscale interactions and kinetics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Biancaniello, Paul L. ; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 ; Crocker, John C.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2387893 

We describe an optical tweezers instrument for measuring short-ranged colloidal interactions, based on a combination of a continuous wave line optical tweezers, high speed video microscopy, and laser illumination. Our implementation can measure the separation of two nearly contacting microspheres to better than 4 nm at rates in excess of 10 kHz. A simple image analysis algorithm allows us to sensibly remove effects from diffraction blurring and microsphere image overlap for separations ranging from contact to at least 100 nm. The result is a versatile instrument for measuring steric, chemical and single-molecular interactions and dynamics, with a force resolution significantly better than achievable with current atomic force microscopy. We demonstrate the effectiveness of the instrument with measurements of the pair interactions and dynamics of microspheres in the presence of transient molecular bridges of DNA or surfactant micelles.

Published in:

Review of Scientific Instruments  (Volume:77 ,  Issue: 11 )