Cart (Loading....) | Create Account
Close category search window
 

Design of multichannel laser interferometry for W7-X

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kornejew, P. ; Max-Planck-Institut für Plasmaphysik, EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald, Germany ; Hirsch, M. ; Bindemann, T. ; Dinklage, A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2349745 

An eight channel interferometer is developed for density feedback control and the continuous measurement of electron density profiles in the stellarator W7-X. An additional sightline is launched in the geometry of the Thomson scattering for cross calibration. Due to the W7-X coil geometry access is strongly restricted. This motivates the optimization of the sightline geometry and design studies for supplementary chords. In-vessel retroreflectors will be used and inserted in the first wall elements. To cope with associated mechanical vibrations and thermal drifts during the discharges with envisaged duration of 30 min either two-color or second harmonic interferometry techniques must be applied. Optimum wavelengths are found to be about 10 and 5 μm. A CO2/CO interferometer (10 μm/5 μm) will be tested and compared with an existing CO2/HeNe test interferometer. A special difficulty of remotely operated diagnostics is the need of long transmission lines with a path length of about 60 m required from the diagnostics location to the torus hall and back. Different arrangements will be compared.

Published in:

Review of Scientific Instruments  (Volume:77 ,  Issue: 10 )

Date of Publication:

Oct 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.