Cart (Loading....) | Create Account
Close category search window

Correction of computed tomography motion artifacts using pixel-specific back-projection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ritchie, C.J. ; Dept. of Bioeng., Washington Univ., Seattle, WA, USA ; Crawford, C.R. ; Godwin, J.D. ; King, K.F.
more authors

Cardiac and respiratory motion can cause artifacts in computed tomography scans of the chest. The authors describe a new method for reducing these artifacts called pixel-specific back-projection (PSBP). PSBP reduces artifacts caused by in-plane motion by reconstructing each pixel in a frame of reference that moves with the in-plane motion in the volume being scanned. The motion of the frame of reference is specified by constructing maps that describe the motion of each pixel in the image at the time each projection was measured; these maps are based on measurements of the in-plane motion. PSBP has been tested in computer simulations and with volunteer data. In computer simulations, PSBP removed the structured artifacts caused by motion. In scans of two volunteers, PSBP reduced doubling and streaking in chest scans to a level that made the images clinically useful. PSBP corrections of liver scans were less satisfactory because the motion of the liver is predominantly superior-inferior (S-I). PSBP uses a unique set of motion parameters to describe the motion at each point in the chest as opposed to requiring that the motion be described by a single set of parameters. Therefore, PSBP may be more useful in correcting clinical scans than are other correction techniques previously described

Published in:

Medical Imaging, IEEE Transactions on  (Volume:15 ,  Issue: 3 )

Date of Publication:

Jun 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.