Cart (Loading....) | Create Account
Close category search window

Microwave design and characterization of a cryogenic dip probe for time-domain measurements of nanodevices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun, M.S. ; Department of Electronic and Computer Engineering, Korea University, 5-1 Anam, Sungbuk, Seoul 136-075, Korea ; Hwang, S.W. ; Jeong, D.Y. ; Ahn, D.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We present microwave (MW) design, characterization, and modeling of a dip probe that can deliver ultrashort electrical pulses to semiconductor nanodevices at cryogenic temperatures (T). Systematic MW measurements, equivalent circuit modeling, and parameter extraction of the superconducting coaxial cable, in which there is a T gradient from 300 to 4.2 K, are successfully performed. De-embedding of the MW sample mounting stage (SMS) characteristic from measurement results of the dip probe dipped in liquid He is achieved using this cable modeling. The de-embedded 4.2 K characteristic of the MW SMS is in reasonable agreement with the result of three-dimensional field simulation. Finally, transmission of short electrical pulses from the pulse generator at 300 K to the MW SMS at 4.2 K, with minimal degradation, is successfully demonstrated using our dip probe. Our design and characterization technique can be applied to almost all cryogenic equipment for MW characterization. © 2004 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:75 ,  Issue: 7 )

Date of Publication:

Jul 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.