Cart (Loading....) | Create Account
Close category search window

Newly designed graded screen array for particle size measurements of unattached radon decay products

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fukutsu, Kumiko ; Radon Research Group, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan ; Yamada, Yuji ; Tokonami, Shinji ; Iida, Takao

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A new graded screen array was designed for measuring the particle size distribution of unattached radon decay products. Its validity was verified by experimental approaches using a radon/aerosol chamber. Use of fine wire mesh screens achieved both a high volumetric air flow rate and high alpha count rate. Consequently, this improvement produced both a high sensitivity and good precision in the particle size distribution measurement for unattached radon decay products with an activity median diameter around 1 nm. A special Mylar film cover was used to protect the contamination of detector surface. And shielding effects by wire of a screen were examined in our alpha counting system for precise measurements. As for the results, the particle size distribution of unattached radon decay products was observed at around 1 nm as a narrow peak with the geometrical standard deviation of 1.1. When carrier aerosols were injected into the chamber, typical bimodal distribution was clearly observed. This clear bimodal distribution was observed even in an atmosphere with a relatively low radon concentration of 150 Bq m-3. It indicates that this system is adequate for measurements of the particle size distribution of unattached radon decay products in the natural environment. © 2004 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:75 ,  Issue: 3 )

Date of Publication:

Mar 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.