By Topic

Analysis of mammographic microcalcifications using gray-level image structure features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. P. Dhawan ; Dept. of Electr. & Comput. Eng., Cincinnati Univ., OH ; Y. Chitre ; C. Kaiser-Bonasso

At present, mammography associated with clinical breast examination and breast self-examination is the only effective and viable method for mass breast screening. The presence of microcalcifications is one of the primary signs of breast cancer. It is, difficult however, to distinguish between benign and malignant microcalcifications associated with breast cancer. Here, the authors define a set of image structure features for classification of malignancy. Two categories of correlated gray-level image structure features are defined for classification of “difficult-to-diagnose” cases. The first category of features includes second-order histogram statistics-based features representing the global texture and the wavelet decomposition-based features representing the local texture of the microcalcification area of interest. The second category of features represents the first-order gray-level histogram-based statistics of the segmented microcalcification regions and the size, number, and distance features of the segmented microcalcification cluster. Various features in each category were correlated with the biopsy examination results of 191 “difficult-to-diagnose” cases for selection of the best set of features representing the complete gray-level image structure information. The selection of the best features was performed using the multivariate cluster analysis as well as a genetic algorithm (GA)-based search method. The selected features were used for classification using backpropagation neural network and parameteric statistical classifiers. Receiver operating characteristic (ROC) analysis was performed to compare the neural network-based classification with linear and k-nearest neighbor (KNN) classifiers. The neural network classifier yielded better results using the combined set of features selected through the GA-based search method for classification of “difficult-to-diagnose” microcalcifications

Published in:

IEEE Transactions on Medical Imaging  (Volume:15 ,  Issue: 3 )