By Topic

Design of a flexure for surface forces apparatus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Devaprakasam, D. ; Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560 012, India ; Biswas, S.K.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We report the design of a variation of a double cantilever flexure system used for the measurement of displacement and force in surface force apparatus (SFA). The new force sensor is called dual double cantilever. The simple cantilever flexure suffers rotation, sideways deflection, and thermal expansion at the free end when loaded normally and asymmetrically. In the double cantilever these errors are minimized to a second order. In the dual double cantilever flexure the stiffness is enhanced 16 times as that of a single cantilever flexure but the rotation, sideways deflection, and thermal expansion at the free end are brought to many orders below the instrument resolutions. The new design enables the measurement of deflection by optical and capacitive sensing methods. The stiffness and the strain of the aluminum alloy [AUG1(2024)] flexure were estimated [dimensions, length (l=50.5 mm), breadth (b=10.5 mm), and thickness (t=1.2 mm)] by finite element method and were also validated experimentally. The finite element method was also used to create a map for the selection of a flexure geometry relevant to the properties of material under investigation by a SFA or a nanoindenter. © 2003 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:74 ,  Issue: 3 )