Cart (Loading....) | Create Account
Close category search window
 

On the use of photothermal techniques for monitoring constructed wetlands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gatts, C.E.N. ; Laboratório de Ciências Fı´sicas, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil ; Faria, R.T. ; Vargas, H. ; Lannes, L.S.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1520311 

Wetlands are a valued part of landscapes throughout the world. The steady increase of industrial facilities and disorganized urbanization processes, especially in developing countries, became a serious menace to these systems. The capability of wetlands to serve as a sink for nonpoint pollutants, particularly nutrients, is remarkable, but not limitless. For this reason, efforts to preserve them are considered a strategic issue for several countries. In addition, due to the exploding costs for sewage treatment, constructed wetlands for wastewater treatment (reed-bed systems) have been widely used under a variety of different conditions. Wetlands present unique characteristics related to biogeochemical cycles, the transport and transformation of chemicals due to interrelated physical, and chemical, and biological processes. Particularly, vegetated wetlands can act as a source for greenhouse gases through the emission of sediment-produced methane (CH4) to atmosphere. From studies concerning the behavior of Salvinia auriculata Aublet., we intend to demonstrate the potential use of photothermal techniques for monitoring gaseous emissions in wetlands. © 2003 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:74 ,  Issue: 1 )

Date of Publication:

Jan 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.