By Topic

Tapping mode atomic force microscopy in liquid with an insulated piezoelectric microactuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Rogers, B. ; Department of Mechanical Engineering and the Nevada Ventures Nanoscience Program, University of Nevada, Reno, Reno, Nevada 89557 ; York, D. ; Whisman, N. ; Jones, M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Tapping mode atomic force microscopy in liquids is enhanced using an insulated cantilever with an integrated piezoelectric microactuator. When vibrating the cantilever via direct force modulation by the actuator, a single resonance peak appears in the plot of rms cantilever amplitude versus excitation frequency, eliminating the spurious resonances typical of acoustic excitation in a liquid medium. This simplifies selection of the cantilever’s natural resonance frequency for improved tuning accuracy and speed. Acoustic excitation can excite cantilever modes that do not displace the tip of the cantilever but vibrate the microscope’s detection system and create unwanted liquid-coupled acoustic waves between the liquid-cell and the sample. These modes are eliminated by directly forcing the cantilever. Insulated microactuated probes offer a simple and more direct alternative solution to recently presented magnetic tuning methods. © 2002 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:73 ,  Issue: 9 )