By Topic

LiAS: a reflexive navigation architecture for an intelligent mobile robot system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Vandorpe ; Katholieke Univ., Leuven, Heverlee, Belgium ; H. Van Brussel ; H. Xu

In this paper, a complete hierarchical navigation architecture fur applications in real industrial factory environments is presented. An offline global geometrical planner uses a rough CAD-model of the working environment to plan consecutive via-points which the robot must follow. The navigation between the via-points is performed by a two-level online navigation algorithm. It consists of an online planning module combined with a low-level fuzzy logic avoidance behavior which enables the robot to move to the next goal by only specifying its coordinates in even completely a priori unknown and unstructured factory environments. The system includes a docking motion, based on a dynamic guidance technique. A perception fusion module combines information of three different sensors for accurate modeling of the world. The presented navigation method was tested with the mobile robot Leuven Intelligent Autonomous System (LiAS) and it proved to be useful in real world applications

Published in:

IEEE Transactions on Industrial Electronics  (Volume:43 ,  Issue: 3 )