By Topic

Mobile robot localization: integrating measurements from a time-of-flight laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
U. Larsson ; Dept. of Robotics & Autom., Lulea Univ. of Technol., Sweden ; J. Forsberg ; A. Wernersson

This paper presents an algorithm for environment mapping by integrating scans from a time-of-flight laser and odometer readings from a mobile robot. The range weighted Hough transform (RWHT) is used as a robust method to extract lines from the range data. The resulting peaks in the RWHT are used as feature coordinates when these lines/walls are used as landmarks during navigation. The associations between observations over the time sequence are made in a systematic way using a decision directed classifier. Natural geometrical landmarks are described in the robot frame together with a covariance matrix representing the spatial uncertainty. The map is thus built up incrementally as the robot moves. If the map is given in advance, the robot can find its location and navigate relative to this a priori given map. Experimental results are presented for a mobile robot with a scanning range measuring laser having 2-cm resolution. The algorithm was also used for an autonomous plastering robot on a construction site. The sensor fusion algorithm makes few erroneous associations

Published in:

IEEE Transactions on Industrial Electronics  (Volume:43 ,  Issue: 3 )