By Topic

An incremental approach to developing intelligent neural network controllers for robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
L. A. Meeden ; Swarthmore Coll., PA

By beginning with simple reactive behaviors and gradually building up to more memory-dependent behaviors, it may be possible for connectionist systems to eventually achieve the level of planning. This paper focuses on an intermediate step in this incremental process, where the appropriate means of providing guidance to adapting controllers is explored. A local and a global method of reinforcement learning are contrasted-a special form of back-propagation and an evolutionary algorithm. These methods are applied to a neural network controller for a simple robot. A number of experiments are described where the presence of explicit goals and the immediacy of reinforcement are varied. These experiments reveal how various types of guidance can affect the final control behavior. The results show that the respective advantages and disadvantages of these two adaptation methods are complementary, suggesting that some hybrid of the two may be the most effective method. Concluding remarks discuss the next incremental steps toward more complex control behaviors

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:26 ,  Issue: 3 )