Cart (Loading....) | Create Account
Close category search window
 

Hidden state and reinforcement learning with instance-based state identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
McCallum, R.A. ; Dept. of Comput. Sci., Rochester Univ., NY, USA

Real robots with real sensors are not omniscient. When a robot's next course of action depends on information that is hidden from the sensors because of problems such as occlusion, restricted range, bounded field of view and limited attention, we say the robot suffers from the hidden state problem. State identification techniques use history information to uncover hidden state. Some previous approaches to encoding history include: finite state machines, recurrent neural networks and genetic programming with indexed memory. A chief disadvantage of all these techniques is their long training time. This paper presents instance-based state identification, a new approach to reinforcement learning with state identification that learns with much fewer training steps. Noting that learning with history and learning in continuous spaces both share the property that they begin without knowing the granularity of the state space, the approach applies instance-based (or “memory-based”) learning to history sequences-instead of recording instances in a continuous geometrical space, we record instances in action-percept-reward sequence space. The first implementation of this approach, called Nearest Sequence Memory, learns with an order of magnitude fewer steps than several previous approaches

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

Jun 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.