By Topic

Evolution of an artificial neural network based autonomous land vehicle controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Baluja, S. ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA

This paper presents an evolutionary method for creating an artificial neural network based autonomous land vehicle controller. The evolved controllers perform better in unseen situations than those trained with an error backpropagation learning algorithm designed for this task. In this paper, an overview of the previous connectionist based approaches to this task is given, and the evolutionary algorithms used in this study are described in detail. Methods for reducing the high computational costs of training artificial neural networks with evolutionary algorithms are explored. Error metrics specific to the task of autonomous vehicle control are introduced; the evolutionary algorithms guided by these error metrics reveal improved performance over those guided by the standard sum-squared error metric. Finally, techniques for integrating evolutionary search and error backpropagation are presented. The evolved networks are designed to control Carnegie Mellon University's NAVLAB vehicles in road following tasks

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )