By Topic

Model-based learning for mobile robot navigation from the dynamical systems perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jun Tani ; Sony Comput. Sci. Lab. Inc., Tokyo, Japan

This paper discusses how a behavior-based robot can construct a “symbolic process” that accounts for its deliberative thinking processes using models of the environment. The paper focuses on two essential problems; one is the symbol grounding problem and the other is how the internal symbolic processes can be situated with respect to the behavioral contexts. We investigate these problems by applying a dynamical system's approach to the robot navigation learning problem. Our formulation, based on a forward modeling scheme using recurrent neural learning, shows that the robot is capable of learning grammatical structure hidden in the geometry of the workspace from the local sensory inputs through its navigational experiences. Furthermore, the robot is capable of generating diverse action plans to reach an arbitrary goal using the acquired forward model which incorporates chaotic dynamics. The essential claim is that the internal symbolic process, being embedded in the attractor, is grounded since it is self-organized solely through interaction with the physical world. It is also shown that structural stability arises in the interaction between the neural dynamics and the environmental dynamics, which accounts for the situatedness of the internal symbolic process, The experimental results using a mobile robot, equipped with a local sensor consisting of a laser range finder, verify our claims

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )