Cart (Loading....) | Create Account
Close category search window
 

Rapid, safe, and incremental learning of navigation strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Millan, J.del.R. ; Joint Res. Centre, Commission of the Eur. Communities, Ispra

In this paper we propose a reinforcement connectionist learning architecture that allows an autonomous robot to acquire efficient navigation strategies in a few trials. Besides rapid learning, the architecture has three further appealing features. First, the robot improves its performance incrementally as it interacts with an initially unknown environment, and it ends up learning to avoid collisions even in those situations in which its sensors cannot detect the obstacles. This is a definite advantage over nonlearning reactive robots. Second, since it learns from basic reflexes, the robot is operational from the very beginning and the learning process is safe. Third, the robot exhibits high tolerance to noisy sensory data and good generalization abilities. All these features make this learning robot's architecture very well suited to real-world applications. We report experimental results obtained with a real mobile robot in an indoor environment that demonstrate the appropriateness of our approach to real autonomous robot control

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

Jun 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.