Cart (Loading....) | Create Account
Close category search window

Real-time precision concentration measurement for flowing liquid solutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Krishna, V. ; Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2300 ; Fan, C.H. ; Longtin, J.P.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The precise, real-time measurement of liquid concentration is important in fundamental research, chemical analysis, mixing processes, and manufacturing, e.g., in the food and semiconductor industries. This work presents a laser-based, noninvasive technique to measure concentration changes of flowing liquids in real time. The essential components in the system include a 5 mW laser diode coupled to a single-mode optical fiber, a triangular optical cell, and a high-resolution beam position sensor. The instrument provides a large range of concentration measurement, typically 0%–100% for binary liquid mixtures, while providing a resolution on the order of 0.05% concentration or better. The experimental configuration is small, reliable, and inexpensive. Results are presented for NaCl and MgCl2 aqueous solutions with concentrations ranging from 0% to 25%, with very good agreement found between measured and true concentrations. © 2000 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:71 ,  Issue: 10 )

Date of Publication:

Oct 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.