Cart (Loading....) | Create Account
Close category search window

Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Asif, S.A.Syed ; Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 ; Wahl, K.J. ; Colton, R.J.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We have implemented a force modulation technique for nanoindentation using a three-plate capacitive load-displacement transducer. The stiffness sensitivity of the instrument is ∼0.1 N/m. We show that the sensitivity of this instrument is sufficient to detect long-range surface forces and to locate the surface of a specimen. The low spring mass (236 mg), spring constant (116 N/m), and damping coefficient (0.008 Ns/m) of the transducer allows measurement of the damping losses for nanoscale contacts. We present the experimental technique, important specimen mounting information, and system calibration for nanomechanical property measurement. © 1999 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:70 ,  Issue: 5 )

Date of Publication:

May 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.