By Topic

Neutron spectrum measurements in DT discharges using activation techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Esposito, B. ; Associazione Euratom-ENEA sulla Fusione, C.P. 65, 00044 Frascati (Roma), Italy ; Bertalot, L. ; Loughlin, M. ; Roquemore, A.L.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The JET activation system has eight irradiation ends where samples may be irradiated in the neutron flux from the plasma. There is one end, re-entrant into the top of the vessel, for which there is little intervening material between it and the plasma; the other ends, including two beneath the divertor coils, have increasingly larger amounts of intervening structure. The local neutron spectrum at each irradiation end was measured by simultaneously activating several elemental foils (Al, Au, Co, Fe, In, Mg, Nb, Ni, Ti, Zr). There were 15 activation reactions in the energy range of 0.5–16 MeV which were used as input to the SNL-SAND-II code to determine the neutron energy spectrum. The results are compared with neutron transport calculations both from the MCNP and FURNACE codes: the average standard deviation between measured to SNL-SAND-II calculated activity ratios was as low as 5%. The results demonstrate the reliability of the neutronics calculations and have implications for the design of diagnostics and blankets for the next generation of large tokamaks such as ITER. The 377.9 keV line of the 54Fe(n,2n)53Fe reaction (threshold ∼13.9 MeV, not a dosimetric standard) has also been measured in different plasma conditions. The ratio of the saturated activity from this reaction to that from the 56Fe(n,p)56Mn reaction (threshold ∼4.5 MeV) provides information on the broadening of the 14 MeV fusion peak. © 1999 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:70 ,  Issue: 1 )