Cart (Loading....) | Create Account
Close category search window
 

Radiation-hardened x-ray imaging for burning-plasma tokamaks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seguin, Fredrick H. ; Boston Physics, 28 Commonwealth Avenue, Boston, Massachusetts 02116 ; Petrasso, Richard D. ; Li, Chi Kang

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1147692 

A special type of vacuum-photodiode detector is being developed for x-ray imaging of plasma in fusion-producing tokamaks such as the international thermonuclear experimental reactor (ITER), where the radiation environment will be too hostile for conventional x-ray detectors. The vacuum photodiode has modest efficiency, but it is intrinsically immune to radiation damage if built in such a manner as to expose only metal components to radiation. A design based on appropriately chosen materials (including high-Z cathodes) and geometries (including a small angle between cathode surface and incident x rays) can provide good signals from the 1–100 keV x rays that are of particular importance for imaging the plasmas in the Joint European Torus (JET) and ITER. It should also provide better rejection of signal distortion and noise due to unwanted detection of neutrons and hard gamma rays than conventional detectors. A prototype design is described, along with performance parameters predicted for JET and ITER. In addition, we show results of laboratory experiments that confirm some of the predicted behaviors of the design. © 1997 American Institute of Physics.

Published in:

Review of Scientific Instruments  (Volume:68 ,  Issue: 1 )

Date of Publication:

Jan 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.