By Topic

Improving performance of radial basis function network based with particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sultan Noman Qasem ; Soft Computing Research Group, Faculty of Computer Science and Information System, University Technology Malaysia, Skudai, Johor, Malaysia ; Siti Mariyam Hj. Shamsuddin

In conventional RBF Network structure, different layers perform different tasks. Hence, it is useful to split the optimization process of hidden layer and output layer of the network accordingly. This study proposes hybrid learning of RBF Network with Particle Swarm Optimization (PSO) for better convergence, error rates and classification results. The hybrid learning of RBF Network involves two phases. The first phase is a structure identification, in which unsupervised learning is exploited to determine the RBF centers and widths. This is done by executing different algorithms such as k-mean clustering and standard derivation respectively. The second phase is parameters estimation, in which supervised learning is implemented to establish the connections weights between the hidden layer and the output layer. This is done by performing different algorithms such as Least Mean Squares (LMS) and gradient based methods. The incorporation of PSO in hybrid learning of RBF Network is accomplished by optimizing the centers, the widths and the weights of RBF Network. The results for training, testing and validation of five datasets (XOR, Balloon, Cancer, Iris and Ionosphere) illustrate the effectiveness of PSO in enhancing RBF Network learning compared to conventional Backpropogation.

Published in:

2009 IEEE Congress on Evolutionary Computation

Date of Conference:

18-21 May 2009