Cart (Loading....) | Create Account
Close category search window
 

Improving performance of radial basis function network based with particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qasem, S.N. ; Fac. of Comput. Sci. & Inf. Syst., Univ. Technol. Malaysia, Skudai ; Shamsuddin, S.M.H.

In conventional RBF Network structure, different layers perform different tasks. Hence, it is useful to split the optimization process of hidden layer and output layer of the network accordingly. This study proposes hybrid learning of RBF Network with Particle Swarm Optimization (PSO) for better convergence, error rates and classification results. The hybrid learning of RBF Network involves two phases. The first phase is a structure identification, in which unsupervised learning is exploited to determine the RBF centers and widths. This is done by executing different algorithms such as k-mean clustering and standard derivation respectively. The second phase is parameters estimation, in which supervised learning is implemented to establish the connections weights between the hidden layer and the output layer. This is done by performing different algorithms such as Least Mean Squares (LMS) and gradient based methods. The incorporation of PSO in hybrid learning of RBF Network is accomplished by optimizing the centers, the widths and the weights of RBF Network. The results for training, testing and validation of five datasets (XOR, Balloon, Cancer, Iris and Ionosphere) illustrate the effectiveness of PSO in enhancing RBF Network learning compared to conventional Backpropogation.

Published in:

Evolutionary Computation, 2009. CEC '09. IEEE Congress on

Date of Conference:

18-21 May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.