By Topic

Development and evaluation of an open-ended computational evolution system for the creation of digital organisms with complex genetic architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tyler, A.L. ; Dept. of Genetics, Dartmouth Med. Sch., Lebanon, NH ; White, B.C. ; Greene, C.S. ; Andrews, P.C.
more authors

Epistasis, or gene-gene interaction, is a ubiquitous phenomenon that is inadequately addressed in human genetic studies. There are few tools that can accurately identify high-order epistatic interactions, and there is a lack of general understanding as to how epistatic interactions fit into genetic architecture. Here we approach both problems through the lens of genetic programming (GP). It has recently been proposed that increasing open-endedness of GP will result in more complex solutions that better acknowledge the complexity of human genetic datasets. Moreover, the solutions evolved in open-ended GP can serve as model organisms in which to study general effects of epistasis on phenotype. Here we introduce a prototype computational evolution system that implements an open-ended GP and generates organisms that display epistatic interactions. These interactions are significantly more prevalent and have a greater effect on fitness than epistatic interactions in organisms generated in the absence of selection.

Published in:

Evolutionary Computation, 2009. CEC '09. IEEE Congress on

Date of Conference:

18-21 May 2009