By Topic

Application of hybrid genetic algorithm and simulated annealing in a SVR traffic flow forecasting model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Mou Hung ; Department of Industrial Engineering and Technology Management, Da Yeh University, Changhua 51591, Taiwan ; Wei-Chiang Hong ; Tung-Bo Chen

Due to complex nonlinear data pattern in time series regression, forecasting techniques had been categorized in different ways, and the literature is also full of differing opinions, thus, it is difficult to make a general conclusion. In the recent years, the support vector regression (SVR) model has been widely used to solve nonlinear time series regression problems. This investigation presents a short-term traffic forecasting model by employing SVR with genetic algorithm and simulated annealing algorithm (GA-SA) to determine the suitable parameter combination in the SVR model. Consequently, a numerical example of traffic flow values from northern Taiwan is used to demonstrate the forecasting performance of the proposed SVRGA-SA model is superior to the seasonal autoregressive integrated moving average (SARIMA) time series model.

Published in:

2009 IEEE Congress on Evolutionary Computation

Date of Conference:

18-21 May 2009