By Topic

Dynamic partial reconfiguration of the Ubichip for implementing adaptive size incremental topologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hector F. Satizabal ; Université de Lausanne, Switzerland ; Andres Upegui

The Ubichip is a reconfigurable digital circuit with special bio-inspired mechanisms that supports dynamic partial reconfigurability in a flexible and efficient way. This paper presents an adaptive size neural network model with incremental learning that exploits these capabilities by creating new neurons and connections whenever it is needed and by destroying them when they are not used during some time. This neural network, composed of a perception layer and an action layer, is validated on a robot simulator, where neurons are created under the presence of new perceptions. Furthermore, links between perceptions and actions are created, reinforced, and destroyed following a Hebbian approach. In this way, the neural controller creates a model of its specific environment, and learns how to behave in it. The neural controller is also able to adapt to a new environment by forgetting previously unused knowledge, freeing thus hardware resources.We present some results about the neural controller and how it manages to characterize some specific environments by exploiting the dynamic hardware topology support offered by the ubichip.

Published in:

2009 IEEE Congress on Evolutionary Computation

Date of Conference:

18-21 May 2009