By Topic

An Agent-based Memetic Algorithm (AMA) for nonlinear optimization with equality constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ullah, A.S.S.M.B. ; Sch. of ITEE, Univ. of New South Wales, Canberra, ACT ; Sarker, R. ; Lokan, C.

Over the last two decades several methods have been proposed for handling functional constraints while solving nonlinear optimization problems using Evolutionary Algorithms (EA). However EAs have inherent difficulty in dealing with equality constraints. This paper presents an Agent-based Memetic Algorithm (AMA) for solving nonlinear optimization problems with equality constraints. A new learning process for agents is introduced specifically for handling the equality constraints in the evolutionary process. The basic concept is to reach a point on the equality constraint from its current position by the selected individual agents. The proposed algorithm is tested on a set of standard benchmark problems. The preliminary results show that the proposed technique works very well on those benchmark problems.

Published in:

Evolutionary Computation, 2009. CEC '09. IEEE Congress on

Date of Conference:

18-21 May 2009