By Topic

On-Chip-Integrated Nanowire Device Platform With Controllable Nanogap for Manipulation, Capturing, and Electrical Characterization of Nanoparticles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Uran, C. ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey ; Unal, E. ; Kizil, R. ; Demir, H.V.

We propose and demonstrate nanowire (NW) device platforms on-chip integrated using electric-field-assisted self-assembly. This platform integrates from nanoprobes to microprobes, and conveniently allows for on-chip manipulation, capturing, and electrical characterization of nanoparticles (NPs). Synthesizing segmented (Au-Ag-Au) NWs and aligning them across predefined microelectrode arrays under ac electric field, we controllably form nanogaps between the self-aligned end (Au) segments by selectively removing the middle (Ag) segments. We precisely control and tune the size of this middle section for nanogap formation in the synthesis process. Using electric field across nanogaps between these nanoprobes, we capture NPs to electrically address and probe them at the nanoscale. This approach holds great promise for the construction of single NP devices with electrical nanoprobe contacts.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 5 )