By Topic

Towards Versatile Electronic Nose Pattern Classifier for Black Tea Quality Evaluation: An Incremental Fuzzy Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tudu, B. ; Dept. of Instrum. & Electron. Eng., Jadavpur Univ., Kokata, India ; Metla, A. ; Das, B. ; Bhattacharyya, N.
more authors

Commonly used classification algorithms are not capable of incremental learning. When a new pattern is presented to such a computational model, it can either classify the unknown pattern based on its legacy training or declare the pattern as an outlier if such a provision is built into the associated algorithm. In the case of the pattern being an outlier to the existing training model, it is desirable that the same could be seamlessly included in the training model with appropriate class labels so that a universal computational model may be evolved incrementally. To this end, classifiers having the incremental-learning ability can be of great benefit by automatically including the newly presented patterns in the training data set without affecting class integrity of the previously trained system. In the present treatise, an incremental-learning fuzzy model for classification of black tea using electronic nose measurement is proposed. For application in black tea grade discrimination, an attempt has been made to correlate the multisensor aroma pattern of electronic nose with sensory panel (tea tasters) evaluation. However, this problem is associated with 2-D complexities. On one hand, the aroma of tea depends on the agroclimatic condition of a particular location, the specific season of flush, and the clonal variation for the tea plant. On the other hand, the sensory evaluation is completely human dependent that often suffers from subjectivity and nonrepeatability. In our pursuit of developing a universal computational model capable of objectively assigning tea-taster-like scores to tea samples under test, it has been felt that an incremental approach could be extremely beneficial for electronic-nose-based tea quality estimation. To this end, the proposed incremental-learning fuzzy model promises to be a versatile pattern classification algorithm for black tea grade discrimination using electronic nose. The algorithm has been tested in some tea gardens of northeast I- - ndia, and encouraging results have been obtained.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 9 )