By Topic

Monolithically Integrated III-Sb-Based Laser Diodes Grown on Miscut Si Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tatebayashi, Jun ; Dept. of Electr. Eng., Univ. of California Los Angeles, Los Angeles, CA ; Jallipalli, A. ; Kutty, M.N. ; Shenghong Huang
more authors

We report the formation and growth characteristics of an interfacial misfit (IMF) array between AlSb and Si and its application to III-Sb-based quantum-well broad-area edge-emitting laser diodes monolithically grown on an Si (001) substrate. A 13% lattice mismatch between AlSb and Si is accommodated by using the IMF array. A use of 5deg miscut Si substrates enables simultaneous IMF formation and suppression of an antiphase domain, resulting in a drastic suppression of dislocation density over the III-Sb epilayer and realization of electrically injected laser diodes operating at 77 K. The current-voltage characteristics indicate a diode turn-on of 0.7 V, which is consistent with a theoretical built-in potential of the laser diode. This device is characterized by a 9.1-Omega forward resistance and a leakage current density of 0.7 A/cm2 at -5 V and 46.9 A/cm2 at -15 V.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 3 )