Cart (Loading....) | Create Account
Close category search window
 

Passively Mode-Locked 4.6 and 10.5 GHz Quantum Dot Laser Diodes Around 1.55 μm With Large Operating Regime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Heck, M.J.R. ; Commun. Technol.: Basic Res. & Applic. (COBRA) Res. Inst., Eindhoven Univ. of Technol., Eindhoven ; Renault, A. ; Bente, E.A.J.M. ; Yok-Siang Oei
more authors

Passive mode-locking in two-section InAs/InP quantum dot laser diodes operating at wavelengths around 1.55 mum is reported. For a 4.6-GHz laser, a large operating regime of stable mode-locking, with RF-peak heights of over 40 dB, is found for injection currents of 750 mA up to 1.0 A and for values of the absorber bias voltage of 0 V down to -3 V. Optical output spectra are broad, with a bandwidth of 6-7 nm. However, power exchange between different spectral components of the laser output leads to a relatively large phase jitter, resulting in a total timing jitter of around 35 ps. In a 4-mm-long, 10.5-GHz laser, it is shown that the operating regime of stable mode-locking is limited by the appearance of quantum dot excited state lasing, since higher injection current densities are necessary for these shorter lasers. The output pulses are stretched in time and heavily up-chirped with a value of 16-20 ps/nm. This mode of operation can be compared to Fourier domain mode-locking. The lasers have been realized using a fabrication technology that is compatible with further photonic integration. This makes such lasers promising candidates for, e.g., a coherent multiwavelength source in a complex photonic chip.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 3 )

Date of Publication:

May-june 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.